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Recovery of Compressible Signals
in Unions of Subspaces

Marco F. Duarte, Chinmay Hegde, Volkan Cevher, and Richard G. Baraniuk
Department of Electrical and Computer Engineering

Rice University

Abstract—Compressive sensing (CS) is an alternative
to Shannon/Nyquist sampling for acquisition of sparse or
compressible signals; instead of taking periodic samples,
we measure inner products with M < N random vec-
tors and then recover the signal via a sparsity-seeking
optimization or greedy algorithm. Initial research has
shown that by leveraging stronger signal models than
standard sparsity, the number of measurements required
for recovery of an structured sparse signal can be much
lower than that of standard recovery. In this paper, we
introduce a new framework for structured compressible
signals based on the unions of subspaces signal model,
along with a new sufficient condition for their recovery that
we dub the restricted amplification property (RAmP). The
RAmP is the natural counterpart to the restricted isometry
property (RIP) of conventional CS. Numerical simulations
demonstrate the validity and applicability of our new
framework using wavelet-tree compressible signals as an
example.

Index Terms—Compressive sensing, compressible sig-
nals, unions of subspaces

I. INTRODUCTION

Compressive sensing (CS) is a new approach to simul-
taneous sensing and compression that enables a poten-
tially large reduction in the sampling and computation
costs at a sensor for signals having a sparse representa-
tion in some basis. CS builds on the work of Candès,
Romberg, and Tao [1] and Donoho [2], who showed
that a signal having a sparse representation in one basis
can be recovered from a small set of projections onto
a second, measurement basis that is incoherent with
the first.1 Random projections play a central role as a
universal measurement basis in the sense that they are

Email: {duarte, chinmay, volkan, richb}@rice.edu; Web:
dsp.rice.edu/cs. This work was supported by the grants NSF
CCF-0431150, CCF-0728867, CNS-0435425, and CNS-0520280,
DARPA/ONR N66001-08-1-2065, ONR N00014-07-1-0936,
N00014-08-1-1067, N00014-08-1-1112, and N00014-08-1-1066,
AFOSR FA9550-07-1-0301, ARO MURI W311NF-07-1-0185, and
the Texas Instruments Leadership University Program.

1Roughly speaking, incoherence means that no element of one
basis has a sparse representation in terms of the other basis.

incoherent with any fixed basis with high probability.
The CS measurement process is nonadaptive, and the
recovery process is nonlinear, for which a variety of
algorithms have been proposed [1–6].

While this represents significant progress from
Nyquist-rate sampling, it is possible to do even better
by more fully leveraging concepts from state-of-the-
art signal compression and processing algorithms. In
many such algorithms, the key ingredient is a more
realistic signal model that goes beyond simple sparsity
by codifying the inter-dependency structure among the
signal coefficients. Coding the coefficients according to
a model for this structure enables these algorithms to
compress signals close to the maximum amount possi-
ble — significantly better than a naive coder that just
processes each large coefficient independently.

We have previously developed a new model-based
CS algorithmic framework [7] that parallels the conven-
tional theory by establishing an underlying signal model,
favoring certain configurations for the magnitudes and
indices of the significant coefficients of the signal, and
designing recovery algorithms that exploit the knowledge
of such a model. Building on this work, we developed
CS recovery algorithms in [8] for the recently introduced
union-of-subspaces models for strictly sparse signals [9–
11]. We have shown that these algorithms achieve the
same performance as standard CS recovery [8]. In both
cases, by reducing the degrees of freedom of a sparse or
compressible signal, signal models provide two immedi-
ate benefits to CS. First, they enable a reduction in the
number of measurements M required to stably recover a
signal. Second, during signal recovery, they enable us to
better differentiate true signal information from recovery
artifacts, which leads to a more robust recovery.

In this paper, we build on previous work by ex-
panding the union-of-subspaces signal models beyond
strictly sparse signals. To precisely quantify the benefits
of model-based CS, we introduce and study several
new theoretical concepts that could be of more general
interest. We define a class of model-compressible signals
that can be approximated by increasingly complex sig-
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nals under a established union-of-subspaces model with
exponentially decaying error. We also formulate a new
restricted amplification property (RAmP) that guarantees
stable recovery of model-compressible signals. For some
compressible signal models, the number of random mea-
surements M required by the RAmP is independent of
N .

This paper is organized as follows. A review of the
CS theory is given in Section II. Section III develops
the concept of model-sparse signals and introduces the
concept of model-compressible signals. We also quan-
tify how signal models improve the measurement and
recovery process by exploiting the model-based RIP for
model-sparse signals and by introducing the RAmP for
model-compressible signals in Section IV. Section V
then specializes our theory to the case of wavelet tree-
sparse signal models and Section VI reports on a series
of numerical experiments that validate our theoretical
claims. We conclude with a discussion in Section VII.

II. BACKGROUND ON COMPRESSIVE SENSING

Given a basis Ψ, we can represent every signal x ∈
R

N in terms of the coefficient vector α as x = Ψα. In
this section we will assume without loss of generality
that the signal x is sparse or compressible in the canoni-
cal domain so that the sparsity basis Ψ is the identity and
α = x. A signal x is K-sparse if only K � N entries of
x are nonzero. We call the set of indices corresponding
to the nonzero entries the support of x and denote it by
supp(x). The set ΣK of all K-sparse signals is the union
of the

(
N
K

)
, K-dimensional subspaces aligned with the

coordinate axes in R
N .

While many natural and manmade signals are not
strictly sparse, they can be approximated as such; we
say that such signals are compressible. An example is
a signal x whose coefficients, when sorted in order of
decreasing magnitude, decay according to the power law∣∣xI(i)

∣∣ ≤ S i−1/r, i = 1, . . . , N, (1)

where I indexes the sorted coefficients. Thanks to the
rapid decay of their coefficients, such signals are well-
approximated by K-sparse signals. Let xK ∈ ΣK

represent the best K-term approximation of x, which
is obtained by keeping just the first K terms in xI(i)

from (1). Denote the error of this approximation as

σK(x) := arg min
x̄∈ΣK

‖x− x̄‖2 = ‖x− xK‖2.

We then have that

σK(x) ≤ (rs)−1/2 SK−s, (2)

with s = 1
r −

1
2 . That is, the signal’s best approximation

error has a power-law decay with exponent s as K
increases. We dub such a signal s-compressible.

Compressive sensing (CS) integrates the signal acqui-
sition and compression steps into a single process [1–3].
In CS we do not acquire x directly but rather acquire
M < N linear measurements y = Φx using an M ×N
measurement matrix Φ. We then recover x by exploiting
its sparsity or compressibility. Our goal is to push M as
close as possible to K in order to perform as much signal
“compression” during acquisition as possible. In order to
recover a good estimate of x from the M compressive
measurements, the measurement matrix Φ should satisfy
the restricted isometry property (RIP).

Definition 1: [1] An M×N matrix Φ has the K-RIP
with constant δK if, for all x ∈ ΣK ,

(1 − δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δK)‖x‖2
2. (3)

In words, the K-RIP ensures that all submatrices of Φ
of size M ×K are close to an isometry, and therefore
distance (and information) preserving. Practical recov-
ery algorithms typically require that Φ have a slightly
stronger 2K-RIP or higher-order RIP in order to preserve
differences of K-sparse vectors (which are 2K-sparse in
general) and other higher-order structures [1, 6, 12].

While the design of a measurement matrix Φ sat-
isfying the K-RIP is an NP-Complete problem in
general [1], random matrices whose entries are i.i.d.
Gaussian, Bernoulli (±1), or more generally subgaus-
sian2 work with high probability, provided M =
O (K log(N/K)). These random matrices also have a
so-called universality property in that, for any choice
of orthonormal basis matrix Ψ, ΦΨ has the K-RIP
with high probability. This is useful when the signal
is sparse in a basis other than the identity. A random
Φ corresponds to an intriguing data acquisition protocol
in which each measurement yj is a randomly weighted
linear combination of the entries of x.

A number of different CS signal recovery algorithms,
both from optimization and greedy approaches [1–3, 5,
6], offer provably stable signal recovery with perfor-
mance close to optimal K-term approximation. For a
matrix Φ that has the 2K-RIP and noisy measurements
y = Φx+ n, the recovered signal x̂ holds the guarantee

‖x− x̂‖2 ≤ C1‖x− xK‖2 +
C2√
K

‖x− xK‖1

+C3‖n‖2, (4)

2A random variable X is called subgaussian if there exists c > 0

such that E
(
eXt

) ≤ ec2t2/2 for all t ∈ R. Examples include the
Gaussian and Bernoulli random variables, as well as any bounded
random variable.
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with C1 and C2 denoting constants. This result has many
implications. Under noiseless measurements, K-sparse
signals are recovered perfectly; under noisy measure-
ments, an s-compressible signal has recovery error

‖x− x̂‖2 ≤ C1SK
−s

√
2s

+
C2SK

−s

s− 1/2
+ C3‖n‖2. (5)

III. MODEL-SPARSE AND COMPRESSIBLE SIGNALS

While many natural and manmade signals and images
can be described to first-order as sparse or compressible,
the support of their large coefficients often has an under-
lying inter-dependency structure. This phenomenon has
received only limited attention by the CS community to
date [9–11, 13–16]. In this section, we present a theory
of CS that captures such structure using a union-of-
subspaces model. Such a model reduces the degrees of
freedom of a sparse/compressible signal by permitting
only certain configurations of supports for the large
coefficients. As we will show, this allows us to reduce,
in some cases significantly, the number of compressive
measurements M required to stably recover a signal.

A. Model-sparse signals

Recall from Section II that a K-sparse signal vector
x lives in ΣK ⊂ R

N , which is a union of
(
N
K

)
subspaces

of dimension K. Other than its K-sparsity, there are
no further constraints on the support or values of its
coefficients. A union-of-subspaces signal model (a signal
model in the sequel for brevity) endows the K-sparse
signal x with additional structure that allows certain K-
dimensional subspaces in ΣK and disallows others [9,
10]. More formally, let x|Ω represent the entries of x
corresponding to the set of indices Ω ⊆ {1, . . . , N}, and
let ΩC denote the complement of the set Ω. A signal
model MK is then defined as the union of mK canonical
K-dimensional subspaces

MK =
mK⋃
m=1

Xm, s.t. Xm := {x : x|Ωm
∈ R

K , x|ΩC
m

= 0};

each subspace Xm contains all signals x with supp(x) ∈
Ωm. Thus, the signal model MK is defined by the set
of possible supports {Ω1, . . . ,ΩmK

}. Signals from MK

are called K-model sparse. Clearly, MK ⊆ ΣK and
contains mK ≤

(
N
K

)
subspaces. In the sequel, we will

use an algorithm M(x,K) that returns the best K-term
approximation of the signal x under the signal model
MK .

If we know that the signal x being acquired is K-
model sparse, then we can relax the RIP constraint on
the CS measurement matrix Φ and still achieve stable

recovery from the compressive measurements y = Φx. A
model-based RIP requires that (3) holds only for signals
x ∈ MK [9, 10]; we denote this new property as MK-
RIP to specify the dependence on the chosen signal
model, and change the model-based RIP constant from
δK to δMK

for clarity. Blumensath and Davies [9] have
quantified the number of measurements M necessary
for a subgaussian CS matrix to have the MK-RIP with
constant δMK

and with probability 1 − e−t to be

M ≥ 2
cδ2MK

(
ln(2mK) +K ln

12
δMK

+ t

)
. (6)

This bound can be used to recover the conventional
CS result by substituting mK =

(
N
K

)
≈ (Ne/K)K .

The MK-RIP property is sufficient for robust recovery
of model-sparse signals using recovery algorithms like
model-based CoSaMP [8].

B. Model-compressible signals

Just as compressible signals are “nearly K-sparse”
and thus live close to the union of subspaces ΣK in
R

N , model-compressible signals are “nearly K-model
sparse” and live close to the restricted union of subspaces
MK . To make this new concept rigorous, recall from
(2) that we defined compressible signals in terms of the
decay of their K-term approximation error. The �2 error
incurred by approximating x ∈ R

N by the best model-
based approximation in MK is given by

σMK
(x) := inf

x̄∈MK

‖x− x̄‖2 = ‖x− M(x,K)‖2.

The decay of this approximation error defines the model-
compressibility of a signal; we define the set of s-model-
compressible signals as

Ms = {x ∈ R
N : σMK

(x) ≤ SK−1/s,

1 ≤ K ≤ N,S <∞},

i.e., those signals whose model-based approximation
error has a power-law decay with exponent s as K
increases.

IV. THE RESTRICTED AMPLIFICATION PROPERTY

(RAMP)

In conventional CS, the same requirement (RIP) is a
sufficient condition for the stable recovery of both sparse
and compressible signals. In model-based recovery, how-
ever, the class of compressible signals is much larger
than that of sparse signals, since the set of subspaces
containing model-sparse signals does not span all K-
dimensional subspaces. Therefore, we need to introduce
some additional tools to develop a sufficient condition
for the stable recovery of model-compressible signals.
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We will pay particular attention to signal models MK

that generate nested approximations, since they are more
amenable to analysis. In words, a signal model generates
nested approximations if the support of the best K ′-
term model-based approximation contains the support
of the best K-term model-based approximation for all
K < K ′. An important example of a signal model
that generates nested approximations is the standard
compressible signal model of (2).

When a signal model generates nested approximations,
the support of the difference between the best jK-term
model-based approximation and the best (j + 1)K-term
model-based approximation of a signal can be shown
to lie in a small union of K-dimensional subspaces,
thanks to the structure enforced by the signal model. This
structure is captured by the set of residual subspaces
that are included in each subsequent approximation. We
group them under the notation

Rj,K(M) = {u ∈ R
N s.t. for some x ∈ R

N ,

u = M(x, jK) − M(x, (j − 1)K)},

for j = 1, . . . , �N/K. Each signal x in a signal
model can be partitioned into its best K-term ap-
proximation xT1 , the additional components present in
the best 2K-term approximation xT2 , and so on, with
x =

∑�N/K�
j=1 xTj

and xTj
∈ Rj,K(M) for each j.

Each signal partition xTj
is a K-sparse signal, and thus

Rj,K(M) is a union of subspaces of dimension K. We
will denote by Rj the number of subspaces that compose
Rj,K(M), omitting the dependence on M for brevity.

For exactly K-model-sparse signals, we discussed in
Section III that the number of measurements M required
for a random matrix to have the MK-RIP is determined
by the number of canonical subspaces mK via (6).
Unfortunately, such model-sparse concepts and results do
not immediately extend to model-compressible signals.
Thus, we develop a generalization of the MK-RIP that
we will use to quantify the stability of recovery for
model-compressible signals.

To analyze the robustness of compressible signal re-
covery in conventional CS, we can consider the tail
of the signal outside its K-term approximation as con-
tributing additional “noise” to the measurements of size
‖Φ(x−xK)‖2 [6, 12]. Consequently, the conventional K-
sparse recovery performance result can be applied with
the augmented noise n + Φ(x − xK). This technique
can also be used to quantify the robustness of model-
compressible signal recovery. The key quantity we must
control is the amplification of the model-based approxi-
mation residual through Φ. The following property is a
new generalization of the RIP and model-based RIP.

Definition 2: A matrix Φ has the (εK , r)-restricted
amplification property (RAmP) for the residual sub-
spaces Rj,K of the signal model M if

‖Φu‖2
2 ≤ (1 + εK)j2r‖u‖2

2

for any u ∈ Rj,K and for each 1 ≤ j ≤ �N/K.
Intuitively, the norms of the partitions ‖xTj

‖2 decay
as j increase for signals that are compressible under
the signal model. This observation is instrumental in
relaxing the isometry restrictions on the measurement
matrix Φ and bounding the recovery error for s-model-
compressible signals. The regularity parameter r > 0
caps the growth rate of the amplification of u ∈ Rj,K

as a function of j. Its value can be chosen so that the
growth in amplification with j balances the decay of the
norm in each residual subspace Rj,K with j.

We can quantify the number of rows M required for a
random measurement matrix Φ to have the RAmP with
high probability; we prove the following in [8].

Theorem 1: Let Φ be an M × N matrix with i.i.d.
subgaussian entries and let the set of residual subspaces
Rj,K of the signal model M contain Rj subspaces of
dimension K for each 1 ≤ j ≤ �N/K. If

M ≥ max
1≤j≤�N/K�

2K + 4 ln RjN
K + 2t(

jr
√

1 + εK − 1
)2 ,

then Φ has the (εK , r)-RAmP with probability 1− e−t.
The crux of the theorem is that if the sequence {Rj} has
slow growth, then a small number of measurements will
suffice for robust recovery of model-compressible sig-
nals. The order of the bound of Theorem 1 is lower than
O (K log(N/K)) as long as the number of subspaces Rj

grows slower than NK . Armed with the RaMP, we can
state the following result, which will provide robustness
for the recovery of model-compressible signals; see [8]
for the proof.

Theorem 2: Let x ∈ Ms be an s-model compressible
signal under a signal model M that generates nested
approximations. If Φ has the (εK , r)-RAmP and r =
s− 1, then we have

‖Φ(x− M(x,K))‖2 ≤
√

1 + εKSK
−s ln

⌈
N

K

⌉
. (7)

This result, combined with (4), provides us with a
recovery guarantee for compressible signals:

‖x−x̂‖ ≤ C1S

K−s
+C2

(
‖n‖2 +

√
1 + εKSK

−s ln
⌈
N

K

⌉)
,

with C1 and C2 denoting constants. For matrices having
the RAmP, the model-based recovery algorithms of [8]
provide guarantees for model-compressible signals that
are similar to that of standard algorithms in (5).
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V. EXAMPLE: WAVELET TREE MODEL

Wavelet decompositions have found wide application
in the analysis, processing, and compression of smooth
and piecewise smooth signals because these signals are
K-sparse and compressible, respectively [17]. Moreover,
the wavelet coefficients can be naturally organized into
a tree structure, and for many kinds of natural and
manmade signals the largest coefficients cluster along
the branches of this tree. This motivates a connected
tree model for the wavelet coefficients. We first describe
tree sparsity in the context of sparse wavelet decompo-
sitions. We focus on one-dimensional signals and binary
wavelet trees, but all of our results extend directly to
d-dimensional signals and 2d-ary wavelet trees.

Consider a signal x of length N = 2I , for an integer
value of I . The wavelet representation of x is given by

x = v0ν +
I−1∑
i=0

2i−1∑
j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet
function at scale i and offset j. The wavelet transform
consists of the scaling coefficient v0 and wavelet coef-
ficients wi,j at scale i, 0 ≤ i ≤ I − 1, and position j,
0 ≤ j ≤ 2i − 1. In terms of our earlier matrix notation,
x has the representation x = Ψα, where Ψ is a matrix
containing the scaling and wavelet functions as columns,
and α = [v0 w0,0 w1,0 w1,1 w2,0 . . .]T is the vector
of scaling and wavelet coefficients. We are, of course,
interested in sparse and compressible α.

The nested supports of the wavelets at different scales
create a parent/child relationship between wavelet coef-
ficients at different scales. We say that wi−1,�j/2� is the
parent of wi,j and that wi+1,2j and wi+1,2j+1 are the chil-
dren of wi,j . Wavelet functions act as local discontinuity
detectors; using the nested support property of wavelets
at different scales, it is straightforward to see that a signal
discontinuity will give rise to a chain of large wavelet
coefficients along a branch of the wavelet tree from a
leaf to the root. Moreover, smooth signal regions will
give rise to regions of small wavelet coefficients. This
“connected tree” property has been well-exploited in a
number of wavelet-based processing and compression
algorithms [18, 19]. In this section, we will specialize
the theory from Section III to a connected tree model
T .

A set of wavelet coefficients Ω forms a connected
subtree if, whenever a coefficient wi,j ∈ Ω, then its
parent wi−1,�j/2� ∈ Ω as well. Each such set Ω defines
a subspace of signals whose support is contained in Ω;
that is, all wavelet coefficients outside Ω are zero. In this
way, we define the signal model TK as the union of all

K-dimensional subspaces corresponding to supports Ω
that form connected subtrees.

For tree-compressible signals, we apply Theorem 1 to
find that a subgaussian random matrix has the (εK , s)-
RAmP for the signal model T and all s > 0.5, with
probability 1−e−t, if the number of measurements obeys

M ≥
20K + 4 ln 601N

K3 + 2t(√
1 + εK − 1

)2 (8)

when K ≥ log2N , or

M ≥
20K + 4 ln N

2K3+3K2+K + 2t(√
1 + εK − 1

)2 (9)

when K < log2N ; see [8] for the proofs. Both cases
give a simplified bound on the number of measurements
required as M = O (K), which is a substantial im-
provement over the M = O (K log(N/K)) required
by conventional CS recovery methods. Thus, when Φ
satisfies (8-9), we have the guarantee (7) for s-tree-
compressible signals.

VI. EXPERIMENTS

We now present the results of a number of numerical
experiments that illustrate the effectiveness of model-
based recovery. Our consistent observation is that explicit
incorporation of the tree model during recovery signifi-
cantly improves its performance for a given number of
measurements.

We study one-dimensional piecewise polynomial sig-
nals that match the connected wavelet-tree model de-
scribed above. We employ the CoSaMP recovery al-
gorithm of [6] and the model-based CoSaMP recovery
algorithm of [8] using CSSA, a tree-based approximation
algorithm [20], in all experiments.

Standard CS recovery algorithms require that the
overmeasuring factor M/K is approximately logarithmic
in N . In contrast, (8) suggests that stable CS recovery
of wavelet tree-compressible signals can be performed
with only M = O (K) measurements; thus, the over-
measuring factor does not increase with the signal length
N . Figure 1 shows the growth of the overmeasuring
factor with the signal length N for conventional CS
and model-based recovery. We generated 50 sample
piecewise cubic signals and numerically computed the
minimum number of measurements M required for the
recovery error ‖x − x̂‖2 ≤ 2.5σTK

(x), the best tree-
approximation error, for every sample signal. The figure
shows that while doubling the signal length increases the
number of measurements required by standard recovery
by K, the number of measurements required by model-
based recovery is constant for all N . These experimental
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Fig. 1. Required overmeasuring factor M/K to achieve a target
recovery error ‖x − x̂‖2 ≤ 2.5σTK (x) as a function of the signal
length N for standard and model-based recovery of piecewise smooth
signals. While standard recovery requires M to increase logarithmi-
cally with N , the required M is essentially constant for model-based
recovery.

results verify the theoretical performance described in
Section V.

VII. CONCLUSIONS

In this paper, we have shown that significant perfor-
mance gains can be obtained by exploiting more realistic
and richer signal models beyond the simplistic sparse
and compressible models that dominate the CS literature.
Building on the unions of subspaces results of [9–11], we
have taken some of the first steps towards what promises
to be a general theory for model-based CS by intro-
ducing the notion of a model-compressible signal and
the associated restricted amplification property (RAmP)
condition it imposes on the measurement matrix Φ. For
the volumes of natural and manmade signals and images
that are wavelet-sparse or compressible, model-based
CS offers performance that significantly exceeds today’s
state-of-the-art, requiring only M = O (K) rather than
M = O (K log(N/K)) random measurements. Such
savings become significant for high-dimensional signals
such as high resolution images.
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